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1 Question 76.2 Munkres

This is a great question on Covering space/Deck Transformations

1.1 a

This part is straightforward: This is an index 2 covering, an all subgroups of index 2 are normal.

1.2 b

This space has deck transformation group trivial, and is not normal. Normal coverings are those
in which there is a deck transformation which takes any lift of a certain point to another lift. But
if we pick a point which is the lift of the center of X, it will lift to a point which has a loop A3

attached, no other point in this covering space has such a point attached to it, so we cannot hope
to send it to another point. It must therefore be trivial. Moreover Aut(Y/X) = N(H)/H where H
is the pushforward of the fundamental group of the cover. Since 3 = |G : H| =⇒ N(H)/H|3 so
it’s order 3 or 1. The above discussion states that it cannot hope to be 3, it’s 1 and hence is non
normal

1.3 c

This is order 4 covering, so |N(H)/H| is 1,2 or 4. There is a nontrivial deck transformation which
flips the points at the loops b around, but it’s not the whole group, this is all we can do. The deck
group is Z/2Z, but it’s not normal, since N(H) 6= G

1.4 d

We may slide this right or left integer amounts, it’s a normal covering with deck group Z.

2 August 2021

2.1 G2

a)

If ∫
M

H2 −K dA = 0

then we know that H2 −K = (k1−k2
2

)2 = 0 thus k1 = k2 so this surface is all umbilic. A textbook
theorem gives that this is part of a sphere or a plane.
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2.2 G5

Let M be an orientable geometric surface with boundary, and Gaussian curvature strictly larger
than 1. Let the boundary be formed by smooth geodesic curves.

a)

By Gauss Bonnet we have ∫
M

K dM +

∫
∂M

kg ds = 2πχ(M)

As the boundary is formed by smooth geodesic curves, the second term is zero. Since K > 1 and
K is continuous the integral

∫
M
K dM > 1 as well. Hence we know that 2πχ(M) > 1 so the Euler

characteristic must be positive.

b)

As 2πχ(M) > 1 we know that χ(M) > 1, so our only choice is χ(M) = 2

c)

2.3 T2

We use SvK on the space 3 times. The idea is that since the points are identified we know that

2.4 T3

Recall that the plane R2 is homeomorphic to the two-sphere minus a point via sterographic projec-
tion. Moreover gluing a cylinder to S2 yields a space homeomorphic to T 2, and thus the surface in
question is homeomorphic to the torus minus a point. This latter space is homotopy equivalent to
S1 ∨ S1, so M ' S1 ∨ S1. The deRham cohomology groups of this space are well known.

2.5 T5

a

First we inspect the degree of these coverings. The degree is the number of preimages of points, and
since both Y, Z are path connected the degrees are the same for any point in the spaces. If we look
at the base points both Y, Z have 3 preimages, hence the degree of the coverings is 3 for both spaces.
Recall the degree is also defined as the index of the fundamental groups of Y, Z under the induced
homomorphism of the covering space. By definition Aut(Y ) = N(H)/H where H = p∗(π1(Y, q2)),
we can replace Z for Y and q2 with any preimage of q. Since the index of H is 3 we know that the
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normalizer being a larger subgroup than H must be either H itself or π1(X, q), this follows from
Lagrange’s theorem: H < N(H) < π1(X, q) = G

3 = |G/H| = |G/N(H)||N(H)/H|

So |N(H)/H| = 1 or 3. If 1 then N(H) = H so the automorphism group is trivial, if 3 then
N(H) = G and in particular |Aut(Y )| = |N(H)/H| = 3 =⇒ Aut(Y/X) ∼= Z3

Now for our Y, Z spaces Aut(Y ) ∼= 1 and Aut(Z) ∼= Z3. The reason being for any point in Y ,
say q3, we cannot map it to any other point in Y under automorphism, no other point in Y has a b3
loop attached to it, the other two base points q1, q2 have b1, b2 coming either in or out but not both
so in the picture there is no loop, just a lift ”upwards”. Another way we could see this it to try
to imagine rotating or reflecting this picture, there are no other possible symmetries attached to Y
other than the trivial one. As for Z this has all possible symmetries, we can effectively rotate this
space 120◦ after some manipulations of ’pulling’ q1, q3 downwards to get a more symmetric looking
graph. Another way is to just say that each of q1, q2, q3 has a loop of ’a’ and of ’b’ (rather the
preimages of a, b) coming in and out.

b

Y is not a regular covering space by the above argument, but Z is regular.

c

Y is path connected so the degrees (indexes) are all the same, and it’s 3.

7



3 January 2021

3.1 G2

A helpful trick whenever one sees an integral with H2 is to subtract the Gaussian curvature, this is
exactly what we need for this problem:∫ ∫

H2 −KdM =

∫ ∫ (
k1 − k2

2

)2

dM ≥ 0

Since we’re integrating a nonnegative function. Thus we know
∫ ∫

H2 − K ≥ 0. As such we can
then write ∫ ∫

H2 −KdM =

∫ ∫
H2dM −

∫ ∫
KdM

=

∫ ∫
H2dM − 2πχ(M)

Where the second line comes from Gauss Bonnet. As such this is nonnegative so we can write∫ ∫
H2dM ≥ 4π

Since M homeomorphic to a sphere, the Euler Characteristic is 2. Now the equality will come from
a textbook theorem in Chapter 6 of O’Neill which says any compact all umbilic surfaces are spheres.
If we have equality then the first equation we have∫ ∫

H2dM = 4π ⇐⇒
∫ ∫

H2dM =

∫ ∫
KdM

⇐⇒
∫ ∫

H2 −KdM = 0

⇐⇒
∫ ∫ (

k1 − k2
2

)2

dM = 0

Where the last equality means that k1 = k2, and therefore M is a compact surface which is all
umbilic.

3.2 G3

Let α be an asymptotic curve on a surface M with nonzero curvature. As α is asymptotic then
k(α′) = k(T ) = Sp(T ) · T = 0. Note that since U · T = 0, we have that since Sp(T ) = −∇TU ,
−Sp(T ) · T + U · T ′ = 0, so Sp(T ) · T = U · κN = 0. Since κ 6= 0 we know that U orthogonal to N .

8



Given these we then get that T,N are basis for the tangent plane, and B is the unit normal
vector. Then the matrix of the shape operator with respect to {T,N} basis is(

Sp(T ) · T Sp(T ) ·N
Sp(N) · T Sp(N) ·N

)
The Gaussian curvature is the determinant of the shape operator, which is −(Sp(T ) ·N)2, since we
discovered that Sp(T ) = −B′, so via Frenet Frames we have Sp(T ) = −B′ = τN , so Sp(T ) · T = 0,
and Sp(T ) ·N = τN ·N = τ . Therefore K = −τ 2. Note that this holds when K < 0.

3.3 T1

Let X be a Hausdorff space with two compact subsets A,B. Compact subspaces of Hausdorff spaces
are closed, so we’re asked to prove that X is a normal space. Consider the collection of open sets
in B corresponding to a fixed a ∈ A, by which I mean choose a ∈ A, and then for each b ∈ B there
exists Ua,b, Va,b where a ∈ Ua,b, b ∈ Va,b and they’re disjoint as X is Hausdorff. As we have Va,b for all
b ∈ B we have an open cover of B such that there is a finite subcover: Va,b1 , ..., Va,bn . Each of these
Va,bi are disjoint from the Ua,b and still cover B. Take the intersection of the Ua,bi corresponding to
the finite subcover to get:

a ∈ Ua =
n⋂
i=1

Ua,bi , B ⊂ VB =
n⋃
i=1

Va,bi

We’ve show that for each a ∈ A and compact subset B there exists disjoint opens containing a
and B. Do this for each a ∈ A to get an open cover of A: {Ua} for which there is a finite subcover
{Uai}, and take the union of these open covers to get an open set U = ∪ni=1Uai that contains A. By
the above process each of the finite subcovers has a union of finitely many open sets containing B:
VBi , take the intersection of this to get an open set V = ∩ni=1VBi containing B.

3.4 T2

a)

We use Seifert van Kampen with the open sets U = {(x, t) : t ≥ 1/3}, V = {(x, t) : t ≤ 2/3}.
Then I claim that these are contractible spaces. We do this via the homotopy H((x, t), s) =
(x, linear map t 7→ 1). Via this at s = 0 we are at (x, t), and at s = 1 we get (x, 1) which is a point
for U . A similar homotopy for V sending t 7→ 0 gives that V is contractible. So via SvK we get

π1(X) ∼= 1 ∗π1(U∩V ) 1 = 1

9



b)

Consider two points with the discrete topology. Then the suspension of this space will be S1:
Visually we attach vertical intervals to the two points, and get points at t = 1, then join the two
points at the top and bottom to get a circle.

c)

We’ll show S(X) is path connected for any space, and then via part a we’ll get S(S(X)) is
contractible for free. Showing the space S(X) is path connected can be done by considering
a = (x, t), b = (y, t) ∈ S(X). Then moving t → 0 can be done since the interval is path con-
nected, so we can slide along the interval to 0. Then a, b can be sent to (x, 0), (y, 0), respectively.
But this is the bottom point, and hence (x, 0) = (y, 0) thus there is a path connecting a and b.

3.5 T3

We’ll eventually use some path-lifting, and to do this we’ll need the universal cover of Xk, but to
do this we’ll try to find the Fundamental Group of it. First we note that since R3 \ {0} ' S2, then

R3 \ {k lines through 0} ' S2 \ {2k points} ∼= R2 \ {2k-1 points} ' ∨2k−1S
1

Lets break the above down: The first homotopy equivalence is because we can expand the origin
in our standard R3 minus a point to S2 argument,and each line hits the sphere twice. The second
homeomorphism, not just homotopy, is because one of the points, say WLOG the North pole, can
be used in a sterographic projection argument to see that S2 minus a point is homeomorphic to R2,
then thus we have R2 minus 2k− 1 points. Finally the last homotopy equivalence is that R2 minus
n points is homotopy equivalent to a bouquet of circles. The fundamental group of the last space,
via repeated SvK is the free group on 2k − 1 generators.

The infinite tree graph E is a covering space for this, and via the hint it’s contractible, implying
it’s the universal covering space. By the lifting theorem there is a lift of f that factors through the
(contractible) universal cover, hence f is nullhomotopic.

3.6 T4

a)

We use Seifert van-Kampen. Take the open path connected sets to be U = X−{0}, the space minus
the origin, and V to be a small open neighborhood of the missing point. Then U deformation retract
to the boundary, which is just S1, V is contractible, and U ∩ V is an annulus which deformation
retracts to a circle. Thus by SvK we have

π1(X) ∼= π1(U) ∗π1(U∩V ) π1(V ) ∼= Z ∗Z 1

10



Where the presentation for the fundamental group ofX is 〈a | ιU(b) = ιV (b)〉, where iU : π1(U∩V )→
π1(U) induced by inclusion. ιV = 1, and under the inclusion map the generator b of π1(U ∩ V ) is
sent 3 times around the circle, as rotation 2π/3 3 times give the identity so the fundamental group
of X is

π1(X) = 〈a | a3〉 ∼= Z3

b)

Via the Classification of Compact Surfaces we know that every compact surface has fundamental
group with no torsion or 2 torsion. Our space has fundamental group 3 torsion, and hence is not a
surface.

3.7 T5

The Mobius band deformation retracts to S1, and as cohomology classes are invariant under defor-
mation retraction we compute the deRham Cohomology groups for S1:

H0
dR(S1) = R as S1 is connected. A generator is any continous function with zero derivative, so

take f(x) = 1 for all x ∈M .

H1
dR(S1) = Hom

(
π1(S1)

[π1(S1),π1(S1)]
,R
)
∼= Hom(Z,R) ∼= R. A generator for the 1st deRham group is

ω = xdy−ydx
x2+y2

S1 is a 1-manifold so the higher deRham groups are zero, in particular, H2
dR(S1) = 0

11



4 January 2020

4.1 G2

Let M ⊂ R3 be a smooth compact connected surface with a unit normal vector field U that defines
the Gauss map G : M → S2. If G is a local diffeomorphism we need to find all possible M . I claim
that the only possible M is S2.

If G is a local diffeomorphism, then by the Inverse Function Theorem, there are open neigh-
borhoods V,W for which p ∈ V,G(p) ∈ W such that the restriction of G to V is a diffeomorphism
between V,W . Now as G is a local diffeomorphism, it’s an open map, and having no kernel means
G is injective. As such, G(M) is open and nonempty, as G is injective. Since M is compact and
connected, it’s image under G is also compact and connected. As S2 is Hausdorff, G(M) is closed.
S2 is connected, and so G(M) = S2 meaning that G is surjective. If K ⊂ S2 is compact then
K is closed, and thus G−1(K) ⊂ M is closed and therefore compact, hence G is proper. A sur-
jective proper local diffeomorphism between Hausdorff spaces which the domain is compact and
the codomain is connected is a covering map. Another way: A smooth map between connected
manifolds which is proper and a surjective local diffeomorphism is a covering map.

All this to say that if G is a covering map, M is a covering space of S2. But the only space that
covers S2 is S2 itself, since S2 is simply connected. Therefore M ∼= S2.

4.2 T1

4.3 T2

The Euler characteristic of T 2, K is 0, hence so is the Euler characteristic of their disjoint union.
We get the above space by performing the following operation 4 times: Delete two discs from
an existing surface, and glue the remainder along their boundaries. Deleting a disc is -1 to χ,
identifying 3 vertices and edges has a net gain of 0. In total we delete 8 circles: 4 from the 4 holed
torus, 4 from K, thus we have a net change of -8, thus our surface is non-orientable and hence
2− g = −8 =⇒ g = 10. The first homology is the abelianization of π1 thus Z2 ⊕ Z9

4.4 T3

Let Σg be the compact orientable surface of genus g. We use covering space actions to show this.
Arraign Σ4 to be a “fidget spinner”: a central hole with 3 surrounding arms containing a single hole
spaced by 120 degrees. Then Z3 acts on this space by rotating about the central hole. This act
has no fixed points, and we can define a neighborhood around each point that is disjoint from the
image of the neighborhood under the action. Hence this is a properly discontinuous group action

12



(covering space action) (follows from the fact that we have a finite group acting on a Hausdorff
space with no fixed points, thus it’s properly discontinuous).

Because Z3 acts as a covering space action the quotient group p : Σ4 → Σ4/Z3 is a normal
covering space. This quotient space is a surface of genus 2, via cutting of the remaining arms under
the action and gluing the two boundary circle together. For the covering map p : Σ4 → Σ4/Z3,
p∗(π1(Σ4)) ⊂ π1(Σ2) is a subgroup isomorphic to π1(Σ4) by injectivity, and

Z3
∼= π1(Σ4/Z3)/p∗(π1(Σ4)) ∼= π1(Σ2)/π1(Σ4)

4.5 T4

A,B,C are all convex spaces hence contractible, D is not. So A,B,C are homotopy equivalent.
But only A,C are homeomorphic, B has 3 connected components, but A,C have 4.

4.6 T5

R3 \ S1 ' S2 ∨ S1. Visualize R3 as a solid cube, then removing a circle from it still retains the
inner part, we send the solid cube to a solid sphere, with no circle, all points outside the circle
go to the sphere, all points inside the circle are sent to a line, and this space is S2 ∨ S1. More
concretely: Use SvK to find π1(M), let U = π1(R3 \ S1) and V = Bε(pt), then U ∩ V ' S2 and
hence π1(M) ∼= π1(R3 \ S1). Another way to visualize R3 \ S1 is that this is a torus with a filled
in center, all points outside the circle get sent to the surface of the torus, what’s inside the circles
radius fills in the hole. This core smushes to get a pinched torus. Thus H1 = R Finally this space
M is 2-dimesional so H3 = 0 and it’s connected so H1 = R

13
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7 January 2018

7.1 G1

7.1.1 a

Use orthonormal expansion

T ′ = (T ′ · T )T + (T ′ · S)S + (T ′ · U)U = (T ′ · S)S + (T ′ · U)U = aS + bU

7.1.2 b

Taking the norm of both sides κ =
√
a2 + b2, and geodesic curvature is the curvature along the

perpendicular direction S, so κg = a

7.1.3 c

Gauss-Bonnet of a manifold says∫
M

KdM +

∫
∂M

kgds = 2πχ(M)

A sphere has Gaussian curvature 1/R, and on the domain bounded by a curve, the region A is
homeomorphic to a disc, so the above becomes

1

R

∫
A

dA+

∫
∂A

kgds = 2πχ(A)

This disc has Euler Characteristic 1 so we get∫
∂A

kgds = 2π − 1

R
Area(A)

7.1.4 G3

Planes have a constant unit normal, hence ∇α′U = 0 for the unit normal of α, as it shares the
same unit normal for P,M , thus the shape operator is identically zero, and thus is asymptotic and
trivially principal.
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8 August 2015

8.1 G1

First we compute the derivative of the central curve:

β′ = T (s)− κ′

κ2
N + (

1

κ
)(−κT + τB) +

τ

κ
B = − κ

′

κ2
N +

τ

κ
B

If κ is constant then clearly β′ is perpendicular to the osculating plane, since β′ lives in the span of
the binormal vector.

On the other hand if β′ is perpendicular to the osculating plane, then β′ ·T = β′ ·N = 0, so this
means that

β′ ·N = − κ
′

κ2
= 0

So κ′ = 0 =⇒ κ is constant

8.2 G3

The final answer should be

K =
−fyyf(x, y) + f 2

y − fxxf(x, y) + f 2
x

(f(x, y))4

8.3 G5

Sketchy answer. Use the Gauss Bonnet Formula on the region R enclosed by the parallel γ:∫ ∫
R

KdM +

∫
γ

kgds+
∑

ιj = 2πχ(R)

Now, γ is a closed curve, so the sum of exterior angles is just 0. R is homeomorphic to a closed
disc, so the Euler characteristic is 1. So far we have∫ ∫

R

KdM +

∫
γ

kgds = 2π

Next, the Gaussian Curvature of R is the Gaussian Curvature of the sphere for which R is a
subset of, hence is r−2 where r is the radius of γ, however the radius
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8.4 T2

We need that p is surjective and a set U in Y is open if and only if p−1(Y ) is open in X. First, let
y ∈ Y , then let x = f(y). Then p(x) = p(f(y)) = y, so p is surjective. As p is continous, then if
U ⊂ Y is open, p−1(Y ) is open. If p−1(Y ) ⊂ X is open, then since f is continous, f−1(p−1)(U) is
open in Y . But f−1 ◦ p−1 = (p ◦ f)−1 = idY , so f−1(p−1)(U) = U

8.5 T3

Recall that via the Galois correspondence, covering spaces of T 2 are in bijective correspondence
with subgroups of the fundamental group. However, π1(K) = 〈a, b : a2 = b2〉 is nonabelian, as
aba = b−1 is a relation, whereas π1(T

2) = Z× Z. Subgroups of abelian groups are abelian, and so
this would require π1(K) to be abelian. As this cannot be true, K cannot cover the torus.

8.6 T5

We do some homotopies to these spaces to evenually compute π1, if these spaces fail to share the
same π1 then they cannot hope to be homeomorphic.

X1 ' S2∨S2∨S1. The discs inside the torus can be contracted to points, giving a ’double pinced’
torus. Expand out one of the pinches so that a string connectes these points, this space is S2∨S2∨S1

X2 ' (S1∨S1)×S1, akin to how the torus is S1×S1, the additional annulus introduces a wedge
of circles. To see this (it’s hard to visualize), start with a wedge of circles sitting ’upright’, then at
their connecting point rotate around the z-axis, to get a space which is X2 once you contract the
annulus to a circle.

Now these spaces don’t have the same fund. gp so they cannot be homeomorphic.

Note: This should also be possible through Euler characteristic: Attaching two discs increasing
your Euler characteristic by 2 (2 faces), and so χ(X1) = 2, but attaching an annulus to T 2

18



9 January 2015

9.1 G2

Let α be a unit speed curve on a surface M . Normally we have a Frenet frame {T,N,B} associated
to α, but this changes with the curve. Instead consider the orthonormal frame {T, U, U ×T} where
U is the unit normal of M . By definition κ = ||α′′||, so we’ll use this.

By defintition kg = 〈α′′, U × T 〉, and kn = 〈α′′, U〉. Since {T, U, U × T} form an orthonormal
frame we get that we can write α′′ as a linear combination of these basis vectors by orthonormal
expansion*:

α′′ = (α′′ · T )T + (α′′ · U)U + (α′′ · U × T )U × T

α′′ · T = 0, and so

α′′ = (α′′ · U)U + (α′′ · U × T )U × T = (kn)U + (kg)U × T

Taking the norm gives
κ2 = k2g + k2n

(*) Theorem 1.5 in O’Neill states that if e1, e2, e3 define a frame at a point, then for any tangent
vector v

v = (v · e1)e1 + (v · e2)e2 + (v · e3)e3
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10 August 2011

10.1 T4

Assume for contradiction that there do exist f, g maps with the property that g ◦ f = idX . In this
case by functionality we get that (g ◦ f)∗ = g∗ ◦ f∗ = id∗. As f∗ has a left inverse this means that
it’s injective. But if that’s true it must mean π1(S

1 ∨ S1) ∼= Z ∗ Z ≤ Z2, which is impossible as the
latter is abelian and the former is nonabelian.

10.2 T5

10.2.1 a

X1
∼= RP 2#RP 2#RP 2, and X2

∼= RP 2#RP 2#RP 2#RP 2, which can be found via playing the
standard game with V,E,F.

10.2.2 b

There is a standard theorem which says that for an n-sheeted covering space p : E → B between
finite CW complexes (so for us any compact surface obtained by cutting and gluing), χ(E) = nχ(B).
So if X1 were to cover X2 we’d have that −1 = n(−2) for a positive integer n, this is impossible so
X1 cannot cover X2. If on the other hand X2 covered X1 we’d have −2 = n(−1) so n = 2 solves
this. Yet still we cannot have this, if n = 2 this means the number of sheets, and therefore the
index of the image of π1(X2) would be 2. Index 2 subgroups are normal so no non-regular covering
exists.
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11 January 2010

11.1 G1

B(s) = 〈a sin(s), a cos(s), b〉, taking a derivative we see that −τN = 〈a cos(s),−a sin(s), 0〉. Since
τ > 0 taking the norm returns the same value, but moreover tells us that τ = a:

τ = |τ | = | − τN | = |〈a cos(s),−a sin(s), 0〉| = a

Thus we get that N = 〈− cos(s), sin(s), 0〉, then we make take the cross product N × B = T
to get T = 〈−b cos(s),−b sin(s), a〉, recalling that T = α′ we integrate each component to get
α = 〈b sin(s) + c, b cos(s) + c, as+ c〉 for a constant c.

11.2 G2

11.3 G3

If x : D →M is a coordinate patch then the Jacobian of x is the function such that x∗dD = JxdM ,
so

JxdD(v, w) = x∗dM(v, w) = dM(x∗v, x∗w) = (x∗v × x∗w)U(x(p))

Now,

JxdD(v, w) = (x∗v × x∗w)U(x(p))du ∧ dv
= (xu × xw) · (xu × xw)/|xu × xw|du ∧ dv
= ((xu · xu)(xw · xw)− (xu · xw)2)/|xu × xw|du ∧ dv
= |xu × xw|2/|xu × xw|du ∧ dv
= |xu × xw|du ∧ dv

We have an identity |xu × xw|2 = (xu · xu)(xw · xw)− (xu · xw)2 = EG− F 2, hence |xu × xw| =√
EG− F 2. Now we know that dD = du ∧ dw so this gives x∗dM =

√
EG− F 2du ∧ dw

11.4 G4

a)

First we compute fε,∗, if α is a unit speed curve such that α(0) = p, α′(0) = u then fε,∗(u) =
(fε ◦ α)′(0) = u + ε(U ◦ α)′(0) = u − εSp(u). Let fε(α) = γ and fε(β) = δ for another unit speed
curve β such that β(0) = p, and β′(0) = v where u, v are orthogonal unit vectors. Then as we just
saw γ′(0) = u−εSp(u), and δ′(0) = w−εSp(w). If we look at the cross product we get the following:

γ′(0)× δ′(0) = (u× v)− εSp(u)× v − εSp(v)× u+ εSp(u)× εSp(v)

= (u× v)(1− 2εH + ε2K)
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Since the surface normals are nonzero we get that this is parallel to u× v hence the two tangent
planes are parallel.

b)

JfεdM(u, v) = f ∗ε dMε(u, v) = dM(fε,∗(u), fε,∗(v)) = (fε,∗(u) × fε,∗(v))U(p) = (u × v)(1 − 2εH +
ε2K)U(p)

Now recall that dM = U(u× v), so f ∗ε dMε(u, v) = (1− 2εH + ε2K)dM

c)

The surface area of Mε is gotten by the integral
∫
fε(M)

dMε =
∫
M
f ∗ε dMε, thus∫

M

f ∗ε dMε =

∫
(1− 2εH + ε2K)dM =

∫
dM − 2ε

∫
HdM + ε2

∫
KdM

Now
∫
dM = A(M), the area of M , and

∫
KdM = 2πχ(M) = 2π(2− 2g)

11.5 G5

11.6 T1

11.7 T2

Lifting lemma + Z2 is free abelian and Z2 has torsion + factor through contractible domain.

11.8 T3

11.9 T4

11.10 T5

a

First we show that Y is neither a deformation retract nor a retract of X. We recall that all
deformation retracts are retracts, but not necessarily the other way around, thus if we can show
that Y is not a retract of X it cannot be a deformation retract.
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12 January 2009

12.1 G1

12.2 T1

I think it’s Z

12.3 T4

∆ is a diagonal on the torus X, which is a closed loop on the surface, hence is homeomorphic to
S1. S1 is a retract of the torus but not a deformation retract. The latter reason is because S1 has
a different fundamental group then T 2. But S1 is a retract since we can just project every point
’up’ to the top edge of the square.

12.4 T5

Let X = R2 − {S1} ∪ {(0, 0)}, then this space is homotopy equivalent to an annulus which is
homeomorphic to S1 hence the deRham groups are those of S1
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13 August 2008

13.1 G2

H2 − K 6= 0 means that the integral of these functions never vanishes, as such M is a nonwhere
umblic surface. The integral of K must have a point of positive curvature as M is compact, and
thus 2πχ(M) ≥ 0 if it’s strictly positive we’re a sphere, which is a compact all umbilic surface, this
is impossible so it’s a torus.

13.2 G5

Nonsingular means nonwhere vanishing derivative. By the Inverse Function Theorem f is a local
diffeomorphism, and therefore is an open map, since it sends open sets to open sets. f(M) is
therefore open, closed, and compact. As f is nonsingular we must have f(M) = N as the only
clopen sets of a connected set are the whole space and 0. Thus f(M) = N is compact.

13.3 T2

Let A be the set of fixed points. Then the space M = #5T 2 \ A, has no fixed points. Triangulate
the surface M to that each of the k fixed points is a vertex, then in the lift of this triangulation we
have 5(V − k) + k vertices, and 5 preimages of E,F . The projection map p : M \A→ #5T 2/Z2 \A
is a covering space so we can relate Euler Characteristic:

χ(M) = 5(V − k) + k − 5E + 5F

χ(M) = 2− 2(5) = −8 so

−8 = 5V − 5k + k − 5E = 5F = −4k + 5(χ(#5T 2/Z2))

Now, this is the same as −8 + 4k = 5χ(#5T 2/Z2), and since k > 0, χ(#5T 2/Z2) ≤ 2 we get
upper and lower bounds of the left side 4(−2 + k):

−4 ≤ −8 + 4k ≤ 10 =⇒ 4 ≤ 4k ≤ 18 =⇒ 1 ≤ k ≤ 4

Moreover we must have that 5| − 8 + 4k =⇒ 5|4(−2 + k) =⇒ 5| − 2 + k, but this is not possible
unless k = 2

Such an example is

13.4 T3

The universal cover of a direct product of 3 circles is R3, this is a contracible domain, and as S3 is
simply connected, as such we may lift to a map which factors through a contracible domain, thus
nullhomotopic.
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13.5 T5

We show S1 isn’t a retract of none of these spaces, as such it cannot hope to be a deformation
retract.
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14 January 2008

14.1 G3

We use the parameterization x(u, v) = (u, v, u2 − v2) to compute the shape operator

xu = (1, 0, 2u) xv = (0, 1,−2v)

U =
xu × xv
||xu × xv||

=

(
−2u√

4u2 + 4v2 + 1
,

2v√
4u2 + 4v2 + 1

,
1√

4u2 + 4v2 + 1

)
By the Weingarten equations in the basis of xu, xv the shape operator is of the form:

S(xu) = −Uu = −
(
MF − LG
EG− F 2

xu +
LF −ME

EG− F 2
xv

)

S(xv) = −Uv = −
(
NF −MG

EG− F 2
xu +

MF −NE
EG− F 2

xv

)
E = xu · xu = 1 + 4u2

F = xv · xu = 4uv

G = xv · xv = 1 + 4v2

L = U · xuu =
2√

4u2 + 4v2 + 1

N = U · xuv =
−2√

4u2 + 4v2 + 1

M = U · xvv = 0

Thus

S(xu) = −

 −2(1+4v2)√
4u2+4v2+1

4u2 + 4v2 + 1
xu +

2(4uv)√
4u2+4v2+1

4u2 + 4v2 + 1
xv

 = −
(

−2(1 + 4v2)

(4u2 + 4v2 + 1)3/2
xu +

2(4uv)

4u2 + 4v2 + 13/2
xv

)

S(xv) = −

 −2(4uv)√
4u2+4v2+1

4u2 + 4v2 + 1
xu +

2(1+4u2)√
4u2+4v2+1

4u2 + 4v2 + 1
xv

 = −
(

−2(4uv)

4u2 + 4v2 + 13/2
xu +

2(1 + 4u2)

4u2 + 4v2 + 13/2
xv

)
Thus
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S =

(
2(1+4v2)

(4u2+4v2+1)3/2
− 2(4uv)

4u2+4v2+13/2

2(4uv)

4u2+4v2+13/2
− 2(1+4u2)

4u2+4v2+13/2

)
Yielding that

K =
−4

(4u2 + 4v2 + 1)

H =
4(v2 − u2)

(4u2 + 4v2 + 1)3/2

14.2 T2

Contract the cylinder to be touching the sphere, this can be done via a straight line homotopy
sending [−3, 3] 7→ [−1, 1] for x. Then the resulting surface is a sphere with a cylinder through the
middle, which is homotopy equivalent to the sphere with a ’handle’ attached to the outside, this is
homeomorphic to the torus, and hence π1(Y ) ∼= Z2

14.3 T4

We use homotopy equivalence to find these spaces. First we note that the arc connecting the north
pole and south pole of X is closed contractible sub-complex of X, thus joining these together gives
a space homotopy equivalent to S2 ∨ S1. For Y we contract the disc to a point to get a ’pinched
torus’, which is homotopy equivalent to a crescent moon shape with a line connecting them. This
is homotopy equivalent to S2 ∨ S1, hence X ' Y . For Z contracting the disc yields an ’hourglass’
shape that is homotopy equivalent to S2 ∨ S2. So Z is not homotopy equivalent to X or Y .

14.4 T5

This is the helicoid. Note that if z = 0 we get a normal circle in the xy-plane. The larger z
becomes, the larger the radius of the circle becomes in either direction. This space has fundamental
group Z gotten by the generator wrapping around the central circle (we can collapse to the circle
x2 + y2 = 1). As a result

H1
dR(X) ∼= R ω =

ydx− xdy
x2 + y2

Is the 1st deRham group with a nontrivial generator. As X is a 2 dimensional surface any groups
Hn(X) = 0, n > 2, and since X is noncompact H2(X) = 0. Finally this is a connected space thus
H0(X) = R with any nonzero constant function as generator, f(x) = 1 works.
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15 January 2006

15.1 G5

Use the exterior derivative to find dω = 0: Let f = x
x2+y2

dy, g = y
x2+y2

dx

dω =
∂f

∂x
∧ dx− ∂g

∂y
∧ dx

=
x2 + y2 − 2x2

(x2 + y2)2
dy ∧ dx− x2 + y2 − 2y2

(x2 + y2)2
dx ∧ dy

=
−(x2 + y2) + 2x2 − (x2 + y2) + 2y2

(x2 + y2)2
dx ∧ dy

=
−2(x2 + y2) + 2x2 + 2y2

(x2 + y2)2
dx ∧ dy

= 0

As for the second part, notice that the triangle with the prescribed vertices do not include the
origin, as a result the curve C is contractible, and thus the integral is zero via Stoke’s theorem:

0 =

∫
ABC

dω =

∫
C

ω

15.2 T5

We use SvK. Let U be T 2 with an open arc around the two holed disk, this deformation retracts
to just T 2 since this is just an open neighborhood around one of the generators of π1(T

2). Let
V be the disk with the attached cylinder, and an open neighborhood around the disk, this just
deformation retracts to the disk with the cylinder. U ∩ V ' S1. The fundamental group of
π1(T

2) ∼= 〈α, β : αβ = βα〉, π1(U ∩ V ) ∼= 〈γ〉. For V we do some homotopy: Shrink the two holed
disk down to S1 ∨S1 with a cylinder attached. Then expand a loop out from the middle of S1 ∨S1

to get something which look like a pair of glasses with a cylinder attached. The cylinder can be
smushed down to give S1 ∨ S1. (See picture below). Thus via SvK we get

π1(Y ) ∼= 〈α, β, ω, δ : αβ = βα, δω = α〉
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16 August 2005
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17 January 2005

(To fill in, sketch solutions)

17.1 G1

α unit speed means it’s nonsingular, thus β′ = T + ε(−τN) is nonsingular as ε > 0 and T 6= 0. Use
the formula

κβ =
||β′ × β′′||
||β′||3

17.2 G2

It’s regular since xu × xv 6= 0, thus can define a unit normal. Use the formula, and remember
S(xu) = −Uu

17.3 G3

17.4 G4

17.5 G5

17.6 T1

Probably want to use that the diagonal is closed iff Hausdorff

17.7 T2

See Lemma 75.2 in Munkres for a full solution. It requires path lifting.

17.8 T3

For contradiction assume that h(x) 6= x for all x ∈ M , then the map p : M → M/Zp is a regular
covering map, since we’ve asked for Zp to act on the Hausdorff space M with no fixed points. As
such we can define a triangulation of the surface M/Zp to be such that pV, pE, pF , since we may
cover the surface with a triangulation that has p preimages, and therefore we get

χ(M) = pχ(M/Zp)

As M is of genus 3 we know χ(M) = 2− 2(3) = −4 and we have that pχ(M/Zp) = p(V −E + F ),
thus p| − 4, but we know p ≥ 3 is prime, hence this cannot happen. Contradiction.
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17.9 T4

We need to do SvK 3 times. First let U be the left half of the 2-torus with an open collar of the
right half, and V be the same with the right half. Then U ∩ V ' S1, it’s an open cylinder, which
smushes to a circle. Now we preform SvK on U , and the computation is the same for V .

For U we get a space which deformation retracts to a torus with the attached Mobius band
around γ1. Call this space X, and via abuse of notation let U be the torus with open nbhd of γ1, V
the Mobius band with open nbhd of its boundary, then U ∩ V is a circle. π1(U) = 〈γ1, α1 : γ1α1 =
α1γ1〉, π1(V ) = 〈ξ : ∅〉, π1(U ∩ V ) = 〈δ : ∅〉. By SvK we send δ to γ1, since it’s on the generator,
and δ to ξ2, since the boundary of the Mobius band U ∩ V goes twice around the inner circle, the
generator of V . Thus by SvK we get

π1(X) = 〈γ1, α1 : γ1α1 = α1γ1〉

17.10 T5
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18 January 2004

18.1 T2

Let f : Sn → Y be a continuous closed surjective map. Let y1 6= y2 be elements in Y . Then as
f is surjective there exist x1, x2 ∈ X such that f(xi) = yi for i = 1, 2, and as Sn is Hausdorff it’s
singleton’s are open, and under a closed map their images (yi) are closed too. As such we may look
at the pullback of these elements: f−1(yi) ⊂ Sn, which are closed subsets. Since Sn is compact
Hausdorff it’s normal, and therefore we may find open sets f−1(yi) ⊂ Ui. Consider now U c

i , the
complement of these open sets. Under f we get closed sets in Y : f(U c

i ) ⊂ Y , to get the sets in Y
we want we take another complement: yi ∈ f(U c

i )
c

18.2 T3

Let Σ be the compact connected orientable surface of genus 2 and h : Σ → Σ a homeomorphism
with order p. For contradiction assume there is no fixed point, then the action of h is properly
discontinuous, and we get that Σ/Zp is a surface, and f : Σ → Σ/Zp, the quotient, is a covering
map. Moreover each point in this quotient space has p-preimages. Triangulate the quotient space
so that the V,E, F of the quotient has pV, pE, pF preimages. Then the Euler Characteristic of Σ is

χ(Σ) = pV − pE + pF = p(V − E + F ) = pχ(Σ/Zp)

As Σ is the genus 2 surface we know χ(Σ) = 2 − 2(2) = −2 which means that p| − 2, but p is an
odd prime, yielding a contradiction.

18.3 T4

a)

A regular, or normal, covering is one for which between any two points ei, ej ∈ p−1(x0) there is a
deck transformation F such that F (ei) = ej. For this covering space E the deck transformation
which shifts the line is one such deck transformation. As we may shift the line however far to the
right or left and preserve the symmetry, this is a regular covering.

b)

As stated above the deck transformations of this group are those which shift the line left or right,
thus giveing that G ∼= Z, geometrically the generator is that which shifts the points one step to the
right: F (ei) = ei+1

c)

The subgroup is π(X, x0), the whole group.
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18.4 T5

If M is a smooth compact connected orientable surface with Euler Characteristic -4, then by the
Classification of Compact surfaces, M is a 3 holed torus. Deleting a point from the surface gives a
space X, which is the ’wire frame’ of the surface, which under identification gives a wedge sum of
6 circles. Thus

H0
dR(X) = R

H1
dR(X) =

6⊕
i=1

R = R6

Hn
dR(X) = 0,∀n ≥ 2
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19 January 2000

19.1 1

For part a just take enough derivatives. For part b, use the fact that the Frenet frame is a basis to
write x in this basis with coefficients given by x · T , etc. to get that part.

19.2 2

If M is a surface with a coordinate patch X in which there is a metric tensor

ds2 = Edu2 +Gdv2

Then we can find a frame field of TpM as follows: Let E1 = 1√
E

∂
∂u
, E2 = 1√

G
∂
∂v

. By construction
this frame are multiplies of the partials of Xu, Xv. This is orthonormal as we’ve divided by the
norm of E,G and these are perpendicular to one another as well.

The dual frame is θ1 =
√
Edu, θ2 =

√
Gdv

19.3 6

The closure of a connected set is always connected: Assume S = A ∪ B, we aim to show A or B
are empty.

19.4 7

Lemma. If X̃, Ỹ are simply connected covering spaces of path/locally-path connected space X, Y
respectively, then if X ' Y , X̃ ' Ỹ

Proof. If p : X̃ → X, and q : Ỹ → Y are the coverings then if fg ' 1, gf ' 1 are the respective
homtopies of X, Y , we get a lift of fp : X̃ → Y to F : X̃ → Ỹ . This lift exists since X̃ is simply
connected, so fp∗(π1(X̃)) ⊂ q∗(π1(Ỹ )), similarly we get a lift G : Ỹ → X̃. Now GF : X̃ → X̃ is
homotopic to a deck transformation φ, so φ−1GF ' idX̃ and likewise there is a deck transformation
of Ỹ such that FGψ−1 ' Ỹ , thus we have a homotopy equivalence.

This fails for n > 2, but holds for n = 2. First let n > 2, then we know that Rn \ {0} ' Sn−1

via the usual homotopy x/||x||. Then any covering map f : Rn → Sn−1 would imply that Rn is
the univeral covering, but this cannot be true, as Sn−1 is simply connected for n > 2 and therefore
if such a covering exists it would mean that Rn ' Sn−1 which is not true (the latter space is not
contractible for example).

If n = 2 then we have a covering: R2 → S1 is a covering with the map....
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20 January 1996

20.1 T6

Let U be Σ2 − pt, V an open collar of the boundary of the Mobius band with the Mobius
band, and U ∩ V ' S1. π1(U) ∼= 〈a1, b1, a2, b2〉 (deleting point from the Σ2 deform retracts
to a wedge of circles), π1(V ) ' π1(M) ∼= 〈α〉, and π1(U ∩ V ) ∼= 〈δ〉. By SvK we get that
π1(X) ∼= 〈α, a1, b1, a2, b2 : α2 = a1b1a

−1
1 b−11 a2b2a

−1
2 b−12 〉

In order to identify the surface we look at what operations were preformed: We took Σ2 and
deleted a disk, effectively removing a face from the triangulation of the space. χ(Σ2) = 2−2(2) = −2,
and deleting a disk reduces the Euler characteristic by 1: so now it’s −3. Gluing on a Mobius strip
identifies 3 vertices and 3 edges and thus has a net change of 0 to the Euler characteristic, hence
we get that this new space has χ = −3, it contains a Mobius band so it’s nonorientable so we get
that 2− g = −3 =⇒ g = 5 hence a connect sum of 5 projective planes.

20.2 T7

Removing the x-axis from 3-space deletes the origin, R3 \ {0} ' S2, and the x-axis intersects S2 at
two points. WLOG take one of these to be the North Pole, then via Stereographic projection we
get that this is homeomorphic to R2− 0, and thus H1 = Hom(π1(S

1)ab,R) = R. The basis is given
by ω = xdy−ydx

x2+y2
, which is closed by check, but not exact by integrating over α(t) = (cos t, sin t)
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